Analisa Numerik Perilaku Aliran yang Melalui Struktur Persegi

Authors

  • La Ode Ahmad Barata Jurusan Teknik Mesin, Universitas Halu Oleo
  • Lukas Kano Mangalla Jurusan Teknik Mesin, Universitas Halu Oleo
  • Amrullah Politeknik Negeri Ujung Pandang, Makassar

DOI:

https://doi.org/10.55679/pistonjt.v8i2.53

Keywords:

LES, Attack angle, Fluid forces, Velocity, Fluid flow

Abstract

This study is designed to analyze the flow characteristics aver a square body with variations in the angle of attack of the flow. The force components u, CD, -CPb, CL and St are analyzed numerically. The method used in this research is the Large Eddy Simulation (LES) turbulent model with variations in the angle of incidence of fluid flow on a square test geometry model with cross-section height H = 40 mm (D = H). The results showed that the large angle of incidence of the flow increased the value of CD, CL due to the enlargement of the flow in the downstream wake area. While the CP value also decreased due to the negative pressure gradient of the downstream area enlarged with an increase in the value of the angle of attack of the flow. The angle of attack increases the parameters CDmax = 2.33, CP = -1.87, and St = 0.09 at an angle of -30° while at an angle of 0° the value of CD = 2.05 -CPb = -1.37, St = 0.128. Changes in the angle of incidence of the flow affect the frequency of vortices. The local velocity component (u) decreased.

Downloads

Download data is not yet available.

References

S. C. Yen and C. W. Yang, “Flow patterns and vortex shedding behavior behind a square cylinder,” J. Wind Eng. Ind. Aerodyn., vol. 99, no. 8, pp. 868–878, 2011, https://doi.org/10.1016/j.jweia.2011.06.006.

O. Lehmkuhl, G. Chrysokentis, S. Gomez, and H. Owen, “Large eddy simulation for automotive aerodynamics with Alya,” 10th Int. Conf. Comput. Fluid Dyn. ICCFD 2018 - Proc., pp. 1–11, 2018.

P. C. M. Lesieur, O. Métais, Large-Eddy Simulations of Turbulance. United States of America: Cambridge University Press., 2005.

L. O. A. Barata, T. Kiwata, A. Rachman, S. and N. Endriatno, "Numerical Investigation of Flow Around Finite Height Rectangular," CFD Letters, pp. 154-175, 2023. https://doi.org/10.37934/cfdl.15.6.154175.

L. O. A. Barata, Edward Ngii, Takahiro Kiwata, & Takaaki Kono. (2022). Enhancing Dynamic Response of Cantilevered Rectangular Prism Using a Splitter Plate as a Passive Turbulence Control in Water Tunnel. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 91(2), 1–14. DOI: https://doi.org/10.37934/arfmts.91.2.114.

Samhuddin, L. O. A. Barata, and Nurjannah Yusman, “Pengaruh Kendali Turbulensi Aliran terhadap Bidang Aliran Di Sekitar Struktur Persegi”, Piston-JT, vol. 8, no. 1, pp. 30–36, Jul. 2023, DOI: https://doi.org/10.55679/pistonjt.v8i1.42

ANSYS. "Ansys Fluent 18.2 Theory Guide." ANSYS Inc., 2017.

Kajishima, Takeo, and Kunihiko Taira. Computational fluid dynamics: incompressible turbulent flows. Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-45304-0

Versteeg, Henk Kaarle, and Weeratunge Malalasekera. An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007.

Sulistyaningtyas, A. D., & Wantika, R. R. (2022). Penerapan Persamaan Navier-Stokes untuk Model Matematika Perpindahan Panas Aliran Fluida Unsteady. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 5, pp. 781-786).

Oberkampf, William L., and Timothy G. Trucano. "Verification and validation in computational fluid dynamics." Progress in Aerospace Sciences 38, no. 3 (2002): 209-272. DOI: https://doi.org/10.1016/S0376-0421(02)00005-2

Oberkampf, William L., and Matthew F. Barone. "Measures of agreement between computation and experiment: validation metrics." Journal of Computational Physics 217, no. 1 (2006): 5-36. DOI: https://doi.org/10.1016/j.jcp.2006.03.037

Mizukami, Shunichi. 2017. "Study on the Flow around the Elastic Supported Prism and the Vibration Dynamics of the Flow (in Japanese)." Master Thesis, Graduate School of Natural Science and Technology, Kanazawa University.

Knisely, C. W. "Strouhal Numbers of Rectangular Cylinders at Incidence: A Review and New Data." Journal of Fluids and Structures 4, no. 4 (1990): 371–393. https://doi.org/10.1016/0889-9746(90)90137-T.

Bearman, P W, and D M Trueman. "An Investigation of the Flow around Rectangular Cylinders." Aeronautical Quarterly 23, no. 3 (1972): 229–237. DOI: https://doi.org/10.1017/S0001925900006119

S. H. S.P., “Analisis Perbandingan Velocity Dan Shear Stress Perkembangan Boundary Layer Flat Plate Menggunakan Turbulent Model k – ε (Standard, Realizable, RNG),” J. Penelit., vol. 2, no. 1, pp. 27–37, 2017, DOI: https://doi.org/10.46491/jp.v2e1.109.27-37

Y. Wahyudi and M. Agung, “Pengaruh Distribusi Tekanan Terhadap Gaya Lift Airfoil Naca 23012 Pada Berbagai Variasi Angle of Attack,” J. Mech. Eng., 2021.

Downloads

Published

2024-02-12

How to Cite

[1]
L. O. A. Barata, Lukas Kano Mangalla, and Amrullah, “Analisa Numerik Perilaku Aliran yang Melalui Struktur Persegi ”, Piston-JT, vol. 8, no. 2, pp. 51–57, Feb. 2024.